
International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014                                                                              688 
ISSN 2229-5518 

IJSER © 2014 
http://www.ijser.org 

A Performance Analysis of Searching Algorithm 
in Distributed System 

 
          S.Ramaiah                          P. Hemanthkumar                                    N.Jaya krishna 
  Asst.Professor,KMMITS         Asst.Professor,KMMITS                    Asst.Professor, SREC 
             TIRUAPATI                                                   TIRUAPATI                       TIRUAPATI 

ramaiahsali@gmail.com                        hemanthmtechcse@gmail.com           jaya1238@gmail.com 
 
    Abstract -The caching mechanism is used to develop the server load balancing retrieval models. We are focusing on the user who 
can search through keyword in search engine, and also the user how many times they accessed data will be stored in cached 
information. The search engine follows some common techniques, the collection of data to a set of data objects or data sets that are 
stored by the machine, but in this method there is no data retrieving easily. So we use the ESC information to deal with two important 
issues in cooperative cache management. The placement algorithm controls where the information is cached in the network clients and 
is driven by two principals. Information should be cached in the nodes where it is most often accessed and it distrusted into the several 
clients and information frequently accessed should be cached at least one node and also they will be having the log of the system. 
Through this the server can do server load balancing and accurate search concepts will be implemented. 
 
Keywords: Distributed System, Cooperative Caching, Count Boot Filter, Evolution recent Retrievals. 
 

——————————      —————————— 
 

I. INTRODUCTION  
 

Distributed system is a collection of independent 
computers that appears to a single coherent system. 
Emerging search engines are moving several steps 
beyond the naïve bag-of-words approximation 
predominant in today’s information retrieval models. For 
example, multimedia search requires a deep analysis of 
the multimedia content (e.g. music, images, and movies) 
instead of just matching query keywords to the caption of 
the multimedia object. Or, question answering (QA) 
systems perform deep syntactic and semantic analysis of 
the document texts in order to provide short, exact 
answers to natural language questions. 
In this  paper we mentioned the Evolutive Summary 
Counters for increase the file access speed based on that 
we will show how many times they access one file and 
user can search the client have that file is  cache or not 
with the help of Cooperative cache algorithms. 

A novel cooperative caching strategy for such 
distributed search engines that is fully implemented on 
commodity hardware. Our approach manages cache 
contents according to recent usage information. The 
foundation of our architecture is a set of local caches (one 
per system node) that are linked together by a 
cooperative protocol that provides system wide 
transparency. Our cooperative caching strategy relies on 
a new data structure, which we call Evolutive Summary 
Counters (ESC). The ESC keep a record of the recent data 
accesses of a node. This information is stored in count 
bloom filters (CBF) similarly to other proposals such as 
[2], however, and as we detail further in this document, 
our proposal applies these compact data structures to 
record the frequency of access for a given time window, 
and at the same time maintain its recent history. This 
information turns to be very valuable in order to improve 
the placement and location of data in a cooperative cache, 

because it combines decency and frequency of historical 
data access.  
 The ESC information to deal with two important 
issues in the cooperative cache management: the 
placement algorithm controls where information is 
cached in the network and is driven by two principals: 1) 
information should be cached in the nodes where it is 
most often accessed and 2) information frequently 
accessed should be cached at least in one node. The ESC 
placement algorithm achieves good cache locality by 
sending documents to nodes that accessed them 
frequently in a recent time frame, and by avoiding the 
replication of documents infrequently accessed. As a 
second issue for the cooperative cache management, we 
study data search, i.e., how to locate the node that is 
currently caching a certain data unit. ESC-Search 
algorithm that estimates the probability of finding a 
document in a node dynamically, reducing the number of 
nodes queried. A single data structure provides a good 
performance for both placement and search of documents 
in a distributed search engine system. 
  
We summarize the contributions of this paper as: 

1. The ESC as a compact data structure to record 
the recent history of data accesses, 

2. The ESC- placement that is an algorithm to 
distribute the cache contents in a cluster of 
computers efficiently. 

3. The ESC-Search, which is a location procedure to 
know with high probability if a document is 
available and where in the cooperative cache. 

4. In this we focus on increasing file access speed in 
cooperative cache and how many time the user 
can access a single file and finally the file is cache 
memory or not will be shown with the help of 

IJSER

http://www.ijser.org/
mailto:ramaiahsali@gmail.com
mailto:hemanthmtechcse@gmail.com
mailto:jaya1238@gmail.com


International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014                                                                              689 
ISSN 2229-5518 

IJSER © 2014 
http://www.ijser.org 

ESC-Summaries.  
 

II.  RELATED WORK 
 

ESC are a general data structure that may be 
used in different contexts. for example, Dominguez-Sal et 
al. discuss load balancing algorithms for distributed 
systems that are aware of the cache contents in order to 
improve the throughput and the data locality [4]. 
Nevertheless, in [4], it is not consider the placement and 
search problems. Many Algorithms have appeared from 
the peer to peer community to find information in large 
networks using distributed hash tables (DHT): Chord[6], 
Pastry [7].etc. Although DHTs were designed to be used 
in WANs, some prototypes implement them in networks 
with small latencies. For example, shark implements a 
cooperative cache for distributed file systems [11], and 
Squirrel is a web server cache base on cooperation too [12 
]. But, one limitation of DHTs is that it needs to contact 
several nodes sequentially during the location procedure, 
which introduces latency in the search. Depending on the 
application area, the adequacy and the cooperative 
caching considerations differ. For example, Walman et al. 
discuss analytically the application of cooperative 
caching for web data in WANs [10].some placement 
solutions are based on hash functions[8]. But the main 
drawback of these approaches is that the application of 
hashes does not encourage thee locality to access the data. 
Sarkar and Hartmann implement placement and search 
in a distributed cache using inaccurate information, or 
hints, about the state of a client- server system [9 ]. The 
hints are distributed among the clients.  
 

III. PROBLEM STATEMENT 
A P2P network may consist of several peers. 

Each node has a relatively powerful data center, and the 
downloading peers need to access the data centers to get 
needed files. And suppose the source is very long 
distance from downloading peers means the download 
process taking much more time. The neighboring peers 
tend to have similar downloading process and thus share 
common interests. If one peer has accessed a data item 
form the data center, at that time another peer download 
the same file means it make delay. 

We focus on search engines that are composed of 
a set of computing blocks, which we treat as black boxes, 
and the output of the system is obtained as a sequence of 
computations of the blocks. Some of the computing 
blocks might be computationally expensive, and thus, 
their outputs are ideal candidates for caching. Each 
computationally intensive block has a pool of memory to 
store the data related to a document following a local 
cache policy. We select LRU as the local cache policy 
because its wide usage in many applications and its 
proven adequacy to the workload of search engines. 
The Question Answering system with three computing 
blocks (question processing, passage retrieval, and 

answer extraction) and its corresponding local caching 
that is shown fig. 1. 

 
 
Fig.1. Question Answering System of three sequential 
blocks QP, PR AND ER.PR and AE can request and store 
data into the cache using the cache  manager.he Question 
Processing (QP) that parses and analyzes the natural 
language query given by the user. The Passage Retrieval 
(PR) that retrieves from the document collection the most 
relevant documents from the collection and Answer 
Extraction (AE) that Analyzes the retrieved documents in 
PR  with natural language tools, and returns the most 
adequate answers to the user. 

On top of the search engine, we implement a 
distributed cooperative cache with no centralized 
process, which intuitively works like a peer to peer 
network (with no central node) where all nodes can 
directly contact the rest of nodes of the network. The 
communication between nodes is facilitated by the 
following operations. 

 Request/Response: these operations obtain a 
cached entry from a remote node. Once a node 
has local miss, it requests the document through 
a multicast operation (operation (a) in Fig. 1). 
The request includes the document identifier and 
a parameter to identify the computing block that 
requests the data. The receivers of the request 
respond with the data if the entry is available in 
their caches (operation (b)). 

 Forward: this operation transfers the least 
recently used cache entry from a layer to the 
same layer of another node in the network 
(operation ©). 

The access to the collection content can be optimized by 
using shared disks   a distributed file system optimized 
for read operation or simply replication the collection if 
the data set fits in a computer. These architecture can be 
easily extended to very-large-scale setting. For example, 
one can envision a setup where a very large collection is 
partitioned and each different partition is replicated 
among a group of nodes, where each group implements 
our architecture. 
 

IV. COOPERATIVE CACHING 
ALGORITHMS 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014                                                                              690 
ISSN 2229-5518 

IJSER © 2014 
http://www.ijser.org 

We describe the data structure that we propose in this 
paper and is shared by all our cooperative caching 
algorithms, the Evolutive summary Counter (ESC). Then, 
we explain how to apply the ESC-summaries to the 
placement (ESC-placement) and the location of data 
(ESC-search). 

A.  Evolutive Summary Counters 
The Evolutive summary counters(ESC) are a data 
structure deployed in each computing node, which 
records a window of the recent history of the local 
accesses. The ESC is composed by a linked list of k Count 
Bloom filters (CBF) [2]. During a certain period of time, t, 
the CBF at the head of the list is active, i.e, it counts the 
occurrences of the elements in a streamed data set. After t 
time units, a sliding operation is applied, so that a new 
CBF at the back of the list is reset (all counters are set to 0) 
and it becomes the head of the list, that is, the active CBF. 

Each access to a document is recorded into the 
active CBF locally. Thus, each computing node keeps an 
ESC with k CBF, which monitor the last T. K time units. 
The ESC- summary is computed as the aggregation of k 
count filters of the ESC. We evaluated two possible 
summary implementations: 
Plain Summary: A simple addition of all the CBFs. 
Liner Summary: A weighted addition where the most 
recent CBF is multiplied by k, the second most recent CBF 
is multiplied by k-1, and so on, up to the k-th CBF, which 
is multiplied by 1. 
 

 
 

Fig: 2. Summarization example of an ESC  (counters are 
in binary) 

 
B. ESC-Placement 

 The distributed placement when a local cache is 
full and a document is evicted from memory: the 
document is forwarded to another node if the algorithm 
decides that this document is valuable enough to be kept 
in some node of the network, otherwise it is simply 
discarded. Our objective is to keep the documents in the 
node where they are accessed, and to encourage the 

availability of frequent documents in some node of the 
network.  

Esc-Placement automatically evicts from the 
cache entries scarcely accessed i.e, documents not read 
after several forwarding operation. If an entry is evicted 
from the local cache we are not deleting it but trying to 
reduce the number of copies; the destination node is the 
one with the highest probability of holding a copy. If the 
destination node holds a copy of the entry it is not 
necessary to remove any other entry, and hence the 
forwarding procedure is finished. If the destination node 
does not hold a copy, ESC-placement repeats the 
forwarding procedures until it finds a document that can 
be discarded because it is not frequently accessed a 
document with multiple copies in the network. 

The ESC-Placement main objectives are send 
data to where it is being used. Keep at least a cached copy 
and avoid too much copies not frequent documents and 
finally it reduce forward chains. 

 
 

Algorithm 1 : ESC Placement 
Input: Map <IpAddress, ESCSummary> escMap, 
                    List<IpAddress> nodesAvailable,     
                      Document cache Victim 
Output: IpAddress 
 
If (cacheVictim.forwardCounter > MAXIMUM        
                                              FORWARDS)     then 

// Do not forward if the cache victim                   
  Exceeded    the number of allowed                    
  Forwards 

     return 
NULL; 

end 
 
   IPAddress mostAccessedAddr: = NULL; 
   int mostAccessedESCValue := -1; 
foreach(IpAddress currentAddr : nodesAvailable) 
    do 
        // Iterate and find the most accessed node 
         ESCSummary currentESCSummary :=   
                                      escMap.get(currentAddr); 
 int currentESCValue := 
currentESCSummary.getCount(cacheVictim.id); 
    if (currentESCValue > mostAccessedFrequency)     
       then 

mostAccessedAddr := currentAddr; 
        mostAccessedESCValue := currentESCValue; 
        end 
end 
return 
  most Accessed; 
 
 

C. ESC-Search  

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014                                                                              691 
ISSN 2229-5518 

IJSER © 2014 
http://www.ijser.org 

The search algorithm is in charge of locating the 
node where a document is stored. The objective is to 
reduce the number of avoidable misses in the system: an 
avoidable miss is a remote cache miss for a document that 
is cached somewhere in the network, but it is not found 
because the system did not query the proper nodes. 
Although the broadcast of the requests reduces the 
number of avoidable misses to zero, the number of 
message may become a bottleneck.  

The below diagram shows the ESC-Search 
Algorithm. The input is a data structure that stores the 
ESC-summary of each node in the network, the list of all 
the nodes in the network, and the document identifier 
that has been missed in the local cache. Initially, the 
nodes are sorted by their individual probability of having 
the missing document available. Then, the main loop of 
the algorithm adds more nodes to query until the 
estimated probability of avoidable miss is below the 
threshold 
 

 Algorithm 2: ESC Search 

Input: Map <IpAddress, ESCSummary >  
           escMap, List<IpAddress>  nodes  Available, int 
documented 
Output: List <IpAddress> 
 
        // Sort the list of nodes by the  probability of having 
the document  cached in each node 
 
List<IpAddress>L:=nodesAvailable.sortByProbability 
(escMap, documentId); 
int s := 0; 
double probAvoidableMiss := ProbAvoidableMiss 
(escMap, nodesToQuery); 
while (probAvoidableMiss >) ANDs < L.size () ) 
do 
    // Update the avoidable miss probability   until we 
reduce it below 
   // probAvoidableMiss computes 
PAvMiss(s,L)probAvoidableMiss := 
probAvoidableMiss(escMap, s, L); 
    s++; 
end 

// List of nodes that ESC-search  
selects to    query is the sublist of    s nodes. 
 List< IpAddress> nodesToQuery := L.subList(0, 

s); 
 Return 
      nodesToQuery; 
 
The below diagram shows the example of ESC-Search. 
 

 
Fig: 3:.Example of ESC-Search 

 
In this example, we show the steps that ESC-

search (configured with Ɛ =0.10) performs to locate 
documents in a network with four computers. The initial 
state of the system is depicted in Figure 3(a), in which N1 
is computing a query that reads “Doc B”, but it is not 
cached locally. The node tries to locate the document in 
the cooperative cache. First, N1 sorts the node list 
according to the Pfreq:L={N4, N2, N3},where N4 is the 
node with the highest probability of storing a copy of 
“DocB”. Then, N1 calculates the probability of an 
avoidable miss when no node is queried: 

      =0.99 

 
Likely that the document is available in the cooperative 
cache), N1 estimates the probabilities of an avoidable 
miss if more nodes were queried. The first node that is 
included is the one which is more likely to store the 
document, which is N4 because “Doc B” has been 
recently accessed 5 times and its estimated miss 
probability is the largest: 
 

                                        

 

                   

       

                        

However, the probability is still above 0.10 and it is 
necessary to extend the search to more nodes: 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014                                                                              692 
ISSN 2229-5518 

IJSER © 2014 
http://www.ijser.org 

                      

 

The algorithm finishes here because it estimates that the 
probability of an avoidable miss is 0.02 if nodes 2 and 4 
are queried, which is sufficient to satisfy our probability 
miss requirements. Note that up to this point there has 
been no communication among nodes because the ESC-
summaries from the other nodes are already stored in 
N1.Inorder to retrieve “Doc B”, N1 sends a request 
message to nodes 2 and 4 and discovers that the 
document is only available in N4, which transfers it to 
N1. Finally, N1 updates the values of Pfreq according to 
the final result: (a) it decreases Pfreq(4) to 6/9 because the 
document was not found in N2 (where “DocB” was 
accessed four times; and (b) it increases Pfreq(5) to 8/9 
because the document was found in N4 (where “Doc B” 
was accessed five times). Later, N1 computes another 
query that requests “Doc B”, which again is not available 
locally as depicted in Figure 3(b). The steps are similar to 
the one described for the previous request but the 
algorithm finishes after only two steps. 

 

                           

 

Therefore, ESC-search would only query N4 but not N2. 
We observe ESC-search is an algorithm that adapts to the 
previous experience of the system. Given that in the 
previous search the document was only available in one 
node, it updated the corresponding Pfreq(x) and now it is 
able to reduce the number of severs queried. 
 

V. CONCLUSION 
 

In this we proposed a state-of-the-art distributed 
question answering system. The QA System gives 
extracting answer from the retrieval passage with the 
help of cache manager. If the data present in the system it 
will be return otherwise it goes to another nearest system 
and so on. The core of our distributed cache environment 
is the ESC, which is an efficient data structure that 
captures the frequency of accesses to the document rom 
big text collections and generates summaries efficiently. 
The user performance can be evaluated with the help of 
ESC-Placement and ESC-Search Algorithm. In this we can 
increase the file accessed with the help of cached 
algorithms and also the user can search the client have 
that file is in cache memory or not.  

 
REFERENCES 
 
[1]. D. Roussinov, W. Fan, and J. Robles-Flores,      “Beyond keywords: 
auto-mated question   answering on the web,” Commun. ACM, vol. 51,         
no.9, pp. 60–65, 2008.  
[2]. A. Broder and M. Mitzenmacher, “Network  applications of bloom 
filters:A survey,” Internet  
        Mathematics, vol. 1, no. 4, 2003  
[3] M. Surdeanu, D. Moldovan, and S. Harabagiu, “Performance analysis of 
a distributed question/answering system,” IEEE Trans. Parallel 
Distrib.Syst., vol. 13, no. 6, pp. 579–596, 2002. 
  [4]. D. Dominguez-Sal, M. Surdeanu, J. Aguilar-Saborit, and J. Larriba-
Pey, “Cache-aware load balancing for question answering,” in CIKM, 
2008, pp. 1271–1280.  
[5].M. Dahlin, R. Wang, T. Anderson, and D. Patterson, “Cooperative 
caching: using remote client memory to improve file system performance,” 
in OSDI, 1994, pp. 267–280.. 
[6]. I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek,F. 
Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup 
protocol for internet applications,” IEEE/ACM Trans. Netw., vol. 11, 
no. 1, pp. 17–32, 2003. 
[7] A. Rowstron and P. Druschel, “Pastry: scalable, decentralized object 
location, and routing for large-scale peer-to-peer systems,” in Middleware, 
ser. LNCS, vol. 2218. Springer, 2001, pp. 329–350.  
[8].T. Cortes, S. Girona, and J. Labarta, “Design issues of a cooperative 
cache with no coherence problems,” in IOPADS, 1997, pp. 37–46. 
[9] P. Sarkar and J. Hartman, “Efficient cooperative caching using hints,” in 
OSDI, 1996, pp. 35–46. 
[10.]. A.Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. 
Levy,“On the scale and performance of cooperative web proxy caching,” in 
SOSP, 1999, pp. 16–31. 
[11]S. Annapureddy, M. Freedman, and D. Mazi`eres, “Shark: Scaling file 
servers via cooperative caching,” in NSDI, 2005. 
[12] S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: a decentralized peer- 
to-peer web cache,” in PODC, 2002, pp. 213–222. IJSER

http://www.ijser.org/



